Discovery Metadata System

3D shear wave (Vsv) velocity model of West Antarctic crustal structure
GB/NERC/BAS/PDC/01145

Summary

Abstract:
3D vertically-polarised shear wave (Vsv) velocity model of West Antarctic crustal structure developed using data from the 2016-2018 UK Antarctic Seismic Network (UKANET) and Polar Earth Observing Seismic Network (POLENET). Interstation Rayleigh and Love wave phase velocity dispersion measurements at periods of 8-25 seconds were extracted from seismic ambient noise cross-correlograms by automated frequency-time analysis (AFTAN). The ensemble of interstation Rayleigh wave dispersion measurements was used to develop 2D Rayleigh wave phase velocity maps of West Antarctica at periods of 8-25 seconds by Fast Marching Surface Tomography (FMST) on a grid with a node spacing of 0.75deg. 'Local' 1D Rayleigh wave phase velocity dispersion curves were extracted by sampling the 2D Rayleigh wave phase velocity maps at grid node locations. The local 1D Rayleigh wave phase velocity dispersion curves were inverted for 1D shear wave (Vsv) structure to 40 km depth, and the ensemble of 1D shear wave (Vsv) profiles were subsequently gridded to produce the 3D shear wave (Vsv) model of West Antarctica from 10-40 km depth.

Funding was provided by the NERC standard grant NE/L006065/1.

Keywords:
West Antarctica, ambient noise, crust, seismology, tectonics

Access Data

RELATED DATA SET METADATA

GET DATA

PROJECT HOME PAGE

Basic Information